Cue-Validity Variance

Database Selection Algorithm

Evaluation and Enhancement



Travis Emmitt

17 August 1999

Abstract:

The University of Virginia’s Information Retrieval group has been executing and evaluating different database selection algorithms within a controlled test environment.  One of the more recent algorithms under investigation is CVV, developed by Budi Yuwono (Ohio State University) and Dik Lee (Hong Kong University of Science and Technology).  This algorithm consists of two components: cue validity variance (CVV) and document frequency (DF).  Despite the relatively poor performance of the overall algorithm within our test environment, the CVV component was unique enough to merit further study.

 

We modified the CVV algorithm by including two additional components: query term weight (QTW) and inverse collection frequency (ICF), both of which had been shown to be effective in other selection algorithms.  By varying the degree of contribution of each of the four components, we were able to discover CVV variants that performed well overall, while at the same time learning about the overall usefulness of each of the components.



1. Introduction



Documents are stored at different locations within a domain.  In the case of the World Wide Web, the domain includes millions of computers spread over the entire globe.  Many of these computers’ connections to the WWW come and go.  Even within a single university or large company, there may be hundreds or thousands of computers on which a publicly accessible document might exist.



If a user wishes to locate a document, he typically provides a keyword-based search engine with a query consisting of a set of keywords (and possibly some punctuation characters).  The responsibility of the search engine is to return to the user a list of links to documents which have been deemed relevant to the user’s query.



How do we (speaking from the point of view of the search engine and its writers) locate these relevant documents, both accurately and efficiently?  We could use the brute force approach of searching every document at every site for keywords that match those in our query, but this would, in most practical domains, take too much time to satisfy the user.   



Instead, we can create a set of databases that each describe or represent (in the aggregate sense) an entire collection of documents.  The task of reporting relevant documents to the user then breaks down into the following sub-tasks:



receive the user’s query

select which databases to search

forward the user’s query to those databases

merge the results from the databases and present them to the user



We are most interested in sub-task 2, which is called the Database Selection Problem, or the Collection Selection Problem.  That problem, and the remainder of this paper, are concerned with the development and evaluation of different schemes for selecting which databases (collections) should be searched first.



2. Testing Environment



We used the TREC sources, queries, and relevance judgements as our evaluation environment.



There are six sources in the TREC data set: AP, FR, PATN, SJM, WSJ, and ZIFF, each of which consists of hundreds to tens of thousands of documents.  We further partition each source into collections, also called sites or databases, using a choice of “decomposition” methods.  



We were also provided with 250 queries (or “topics”), along with thousands of human-generated relevance judgements (lists of documents judged relevant to each query).  For this experiment we considered only queries 51-150, which were accompanied by the most complete set of relevance judgements.



2.1 Source Decompositions



We have two different source decompositions (partitioning schemes), each of which results in a total of 236 collections.  (
This is not a coincidence; w
e purposefully forced our second decomposition to result in the same number of collections as the first).



The first decomposition is SYM, which stands for Source/Year/Month.  
Documents are grouped according to their source and their date of 
publication (or 
release
)
.  
Example collections under this decomposition are: AP.88.02 (all Associated Press documents from February 1988) and ZIFF.90.12 (all ZIFF documents from December 1990).



The “problem” with SYM is that larger collections tend to contain more relevant documents.  Some collections (especially ones from the AP source) are so large, and contain so many relevant documents relative to the other collections, that any algorithm favoring large collections over small collections will tend to perform well under SYM, independently of the actual query contents.  In other words, if an algorithm ignores the query and simply picks the large “AP” collections first, it will tend to perform noticeably better than a random algorithm.  This susceptibility to query-independent “gaming” makes evaluation of the “global” (decomposition independent) effectiveness of database selection algorithms more difficult.



We therefore developed a second decomposition, UDC, designed to counteract this bias.  UDC stands for Uniform Document Count.  Under this partitioning strategy, each collection has (approximately) the same number of documents as any other collection (1/236 of the total number of documents in the system). This equality is not exact, since we decided not to allow collections to contain documents from multiple sources.  
Example UDC collections are: AP.01 (
the 
first 
approximate
 1/236 of the total documents) and ZIFF.45 (
the 
last 1/236 of the total documents).



2.2 Baselines



Our baseline of focus is RBR, which stands for Relevance Based Ranking.  RBR is derived from the human-provided relevance judgements.  For each (query, collection) pair, we calculate a “merit”, which represents the degree to which the collection is relevant to the query:



RBR merit calculation��meritquery,coll = number of documents in collection

                       which were judged relevant to query��

After we calculate the merits for each collection to each query, we rank the collections in descending order of merit
 for each query
.  In the case of RBR, this means we rank all 236 collections in descending order of judged relevance to the query.  Therefore, the five most rele
vant collections to query 99 will be
 those 
collections 
in the top-5 ranks (ranks 1-5) for query 99, while the least relevant collections to the query will have ranks 232-236.




We
’ve used other 
baselines 
in other experiments, each of which has its own way of calculating merit (and thus its own 
set of 
ranks).  However, for this experiment, we restrict ourselves to examining how estimates compare
 against a single baseline, RBR.



2.3 Estimates



An estimate (or “estimator”, “estimating algorithm”) is a database selection algorithm. Its goal is to, 
when 
given a query, determine the order in which databases (collections) should be 
searched for relevan
t documents.  In other words, an estimator attempts
 to generate the same 
collection rankings as some target
 baseline.  The performance of an estimate is 
a reflection on 
how w
ell its rankings match the rankings
 of the baseline; 
this will be discussed in the next section.



We have evaluated several different estimating algorithms within our testing environment.  The ones discussed in this paper represent “families” of algorithms, with radically different methods of operation from one another.  They can be described briefly:�

CORI   	- the
 best performing estimate we
’ve seen


Ideal(0)	- represents the goal performance of gGLOSS

ntn_ntn 	- uses DF, QTW, and ICF components

SBR       	- Sized Based Ranking, ranks largest collections highest, query independent

CVV     	- a new (to us) algorithm, discussed in this paper



Each estimate has its own methods for calculating meritquery,coll.  Once the merits for an estimate are calculated, collections are ranked, and then the rankings are compared against 
those of 
a baseline (in our case, RBR).  
R
ank
 
comparison is part of performance evaluation, which will be discussed next.



2.4 Performance Evaluation Metrics



Several different metrics can be used to represent the performance of an estimate against a baseline.



Mean Squared Error (MSE) and Spearman’s Rho express the degree of similarity between an estimate’s rankings and baseline’s rankings.  These metrics tend not to be very useful in expressing the effectiveness of a group of collections (e.g, the top-n estimated collections), where within that group the internal order of collections is irrelevant.  In addition, MSE does not discriminate between differences in high-ranking collections' ranks (which should be important) versus differences in low-ranking collections' ranks (which should not be as important).



Precision and Recall rely less on exact rank matching, and more on merit accumulation.  Recall that for the RBR baseline, meritquery,coll is defined as the number of documents in the collection which were judged relevant to the query.  Precision, P(n), is the proportion of the estimated top-n collections that contain at least some RBR merit.  Recall, R(n), is the proportion of the total RBR merit in the estimated top-n collections.  An alternative recall metric, R^(n), is the proportion of total merit in the estimated top-n collections.



For P(n), R(n), and R^(n), n is known as the "cut-off" point.  If a database selection algorithm can only return references to 10 collections, then only those 10 collections' relevance will be considered.  Since there are 236 collections being ranked, there are 236 possible cut-off points.  We can compute aggregate recalls and precisions by averaging over all possible cut-off points.  We call these aggregate measures R(avg) and R^(avg).  



In addition to (236+1=237) different Recalls, 237 different R^s, and 237 different Precisions, we also have 100 different queries for which an estimate can be run. 



We have discovered that algorithms' performance varies significantly over different queries.  Even the "best" algorithms we've seen perform poorly on at least some queries, sometimes more poorly than algorithms which have a much worse overall performance.  Even so, we decided that the simplest, most useful metric for representing overall performance of an algorithm would be R(avg) averaged over all queries
, also called
 average R(avg).
  
This is a single number for each estimate
 (for a given decomposition), which facilitates performance comparisons
 between algorithms
.






2.5 
Joint Performance






Ideally, we'd like to find algorithms that perform well independently of decomposition. Indeed, CORI dominates in performance in both SYM and UDC, though its 
absolute
 scores differ
 across decompositions
.  However, 
some of the 
other estimates' performances 
appear
 to be very sensitive to the choice of decomposition (e.g., they perform relatively well on SYM but not UDC or vice-versa).



For that reason, we created a "joint performance" metric (called joint) which is a simple averaging of performance between SYM and UDC.  Note that joint is far from being a universal predictor of performance over an arbitrary decomposition, since so far we only have two, 
in many ways 
similar decompositions (SYM and UDC).  



3. CVV



CVV stands for Cue-Validity Variance.  It is the name of both a database selection algorithm and a single component used by that algorithm in calculating merits.



3.1 Basic CVV Algorithm



The CVV algorithm, also called the “CVV Ranking Method”, was developed by Budi Yuwono (Ohio State University) and Dik Lee (Hong Kong University of Science and Technology) and was described in [1].  We call this the Basic CVV algorithm to distinguish it from the later, enhanced versions discussed in this paper.



Yuwono and Lee’s Basic CVV algorithm was initially designed for use with an Internet search engine.  One of the assumptions it made was that queries would consists of short sets of singly-occurring keywords.  An example query might be “cat dog”, which contains two terms: “cat” and “dog”, each of which occur exactly once in the query.



Given a query, the Basic CVV algorithm calculates merits (also called “goodness” scores) for each collection in the system.  These estimated merits consist of sums of products, each product which contains two “components”: a CVV component and a DF component:



Basic CVV merit calculation��meritquery,coll = å (CVVterm * DFterm,coll)�                     term in query��

DFterm,coll is the document frequency, the number of documents in the collection in which term occurs at least once.  Ncoll is the total number of documents in the collection, and therefore serves as an upper bound for the DF (the lower bound for DF is 0).



CVVterm is the cue-validity variance, and represents the overall amount of variance in [DF-based] term densities among the collections.  IntDterm,coll is the internal density, the proportion of documents in the collection which contain term.  Likewise, ExtDterm,coll is the external density, the proportion of documents not in the collection but which contain term.  CVterm,coll is the cue-validity, which expresses the relative density.  C is the set of collections in the system, so for both the SYM and UDC decompositions, |C| is 236.  CVVterm,coll is then simply the variance in CVterm,coll and is calculated thus:



CVVterm component calculation��IntDterm,coll  =    DFterm,coll          /   Ncoll

ExtDterm,coll  = å (DFterm,c)   / å (Nc)�              c != coll                         c != coll

CVterm,coll�       = IntDterm,coll / (IntDterm,coll+ ExtDterm,coll)

avgCVterm = å (CVterm,coll) / |C|�                coll in C

CVVterm    = å (CVterm,coll - avgCVterm)2 / |C|�              coll in C��

3.2 Basic CVV Performance



We implemented the Basic CVV algorithm, executed it against both the SYM and UDC decompositions, and evaluated its performance.  It turns out that Basic CVV performs poorly relative to most of the other estimates we have evaluated.



The following two graphs depict R(n), averaged over all queries, for 5 different estimators: CORI, Ideal(0), ntn_ntn, SBR (for SYM only since UDC is SBR-dependent), and Basic CVV.  The first graph is for the SYM decomposition and the second is for UDC.



Note: We’ve evaluated many more algorithms which aren’t shown here in the interest of legibility.  Almost all tested algorithms’ performances fall between that of SBR and CORI, with the majority being closer to CORI.  Basic CVV is among the most poorly performing database selection algorithms we’ve evaluated.
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The average R(avg) for each of these estimates can be thought of as the area under the estimate’s curve divided by the number of possible cut-off values, which in our case is 236.  Since the curves don’t cross each other very often, this single number acts as a good predictor of where the curves will lie relative to one another when plotted.  We define the joint performance of an estimate to be the average of its SYM and UDC performances.� 

Estimating

Algorithm�average R(avg)�for SYM�average R(avg)�for UDC�average R(avg)�joint��CORI�.8972�.7884�.8428��ntn_ntn�.8729�.7356�.8042��Ideal(0)�.8570�.7146�.7858��Basic CVV�.8416�.6735�.7576��SBR�.8168�N/A�N/A��

Basic CVV’s poor performance could be in part attributable to its insensitivity to query term weights (QTW).  Since Basic CVV assumes a term occurs at most once in a query, it would treat a new query “cat cat dog” identically to the query “cat dog”, generating exactly the same merits [and hence rankings] for both queries.  A human making relevance judgements, however, might judge a document differently based on how “important” (frequent) each term is within the query.



In our test environment, all of the queries we use [topics 51-150] have at least one multiply occurring term, with an average of 38% of the terms in a query being multiply occurring (i.e. having query term weight > 1).  This is in clear contrast to Basic CVV’s assumption that no queries will have multiply occurring terms.



4. Enhancement



We were intrigued by the Basic CVV algorithm’s CVVterm component, whose method of  characterizing terms according to the distribution of DF densities among collections was a unique strategy among the set of algorithms we had evaluated so far.  We felt we could improve on Basic CVV by modifying its merit calculations (while keeping the actual CVVterm component calculation intact), and thus get a better idea of the potential usefulness of the CVVterm component.



4.1 Adding a QTW Component



We decided to incorporate query term weights (QTW) in the Basic CVV algorithm, hoping that QTW sensitivity would improve performance.  To do this, we added a new QTWquery,term component to the merit calculation.  We called the resulting enhanced version of the Basic CVV algorithm “CVV with QTW”.



CVV with QTW merit calculation��meritquery,coll = å (CVVterm * DFterm,coll * QTWquery,term)�                     term in query��

This small modification resulted in improved overall performance over the Basic CVV algorithm, though the difference was relatively slight (gaining only around 12% of the performance distance from Basic CVV to CORI):

 

Estimating

Algorithm�average R(avg)�for SYM�average R(avg)�for UDC�average R(avg)�joint��CORI�.8972�.7884�.8428��CVV with QTW�.8486�.6846�.7666��Basic CVV�.8416�.6735�.7576��

When we examined R(avg) on a query-by-query basis (rather than as an average over all queries), we found that although for most of the queries performance either increased or stayed the same, performance actually worsened for around 20-30% of the queries.  This led us to consider the possibility that we were overcorrecting with the QTW component, weighting its influence in the merit calculation too heavily with respect to the other two components.



4.2 Adding Exponents



Since we had three components (CVV, DF, and QTW) being used as factors in a product, we decided to add an exponent to each component.  By varying these exponents, we would be able to change the degree to which each component contributed to the merit calculation.



For instance, to decrease the influence of the QTW component without eliminating it entirely (which would take us back to Basic CVV), we would reduce QTW’s exponent from 1 (as in the CVV with QTW algorithm) to 0.5.  Square-rooting the QTW component, we hoped, would reduce the amount of  overcorrection that we suspected existed in the CVV with QTW algorithm.



Likewise, we could also vary the other two components’ exponents, and search for combinations of exponents that maximized performance.



4.3 Adding an ICF Component



We decided to add an ICFterm component (along with its own exponent) to the merit calculation as well.  ICF, the inverse collection frequency, represents the relative rarity of a term across collections.  It is derived from CFterm, the collection frequency, which is the number of collections in which term occurs:



ICFterm component calculation��

ICFterm = log ((|C| + 1) / CFterm)��

ICF had already been shown to be a useful factor in other database selection algorithms’ merit calculations.  It decreases the influence of terms which appear in many collections and are therefore not good discriminators; terms which occur in few collections are the best discriminators.  ICF’s role is somewhat related to that of the CVV component; both deal with the notion of term rarity, though they calculate it differently.  We were curious to see how well CVV and ICF would work in conjunction with each other, and how well they could work individually. 



4.4 Putting it All Together



With the addition of the ICFterm component and an exponent for each of the components, the final merit calculation equation became this:



Final Enhanced CVV merit calculation��meritquery,coll = å (CVVtermp * DFterm,coll q * QTWquery,termr * ICFterms)�                     term in query��

Our strategy would be to examine the performance resulting from different combinations of exponent values.  By repeatedly varying one or more of the exponents over a range of values and evaluating the resulting performance, we’d be able to locate “peak” (best-performing) exponent combinations.  This would allow us to obtaining better performing database selection algorithms, and would at the same time provide us a look into how each component was contributing to overall performance.



We refer to each version of the final enhanced CVV algorithm by its exponent values, listed in the order in which the components appear in the equation above.  For example, if our merit equation is this:

meritquery,coll = å (CVVterm1 * DFterm,coll 2 * QTWquery,term0.5 * ICFterm3)�            	         term in query

then we’d call this particular algorithm “(1, 2, 0.5, 3)”. 



Note that (1,1,0,0) is another way of designating the Basic CVV algorithm, since the QTW and ICF components are ignored in the merit calculations (their exponents being 0).  Likewise, (1,1,1,0) is the same as CVV with QTW.  (0,1,1,2) is the same as ntn_ntn.



Note also that DFterm,coll is the only component which is collection dependent; the other three components are used solely for weighting the influence of each term in the query.  Thus, if the DF exponent is 0, then merits are collection independent, and so are the same for all collections.  In our test environment, collections with tied merits are ranked alphabetically by collection name (for SYM, this would mean AP.88.02 would be ranked first, ZIFF.90.12 last).  Consequently, (*, 0, *, *) [any exponent for CVV, QTW, and ICF, but a 0 exponent for DF] is the same algorithm as alphabetical-by-collection-name.



5. Combination Search Methodology



We limited ourselves by using a single decimal place in the exponents.  This was done mostly for naming and scripting simplicity.  Also, it was questionable whether increasing the exponent precision beyond one decimal place would provide a meaningful increase in information, since early on we discovered that “peak” performers for SYM and UDC had exponents differing by more than a decimal place.



Even with only a single decimal place to consider, it was not practical to search every point within the bounds of, say, 0 to 3, for each exponent.  This would result in 31 possible values for each exponent, and even if we explored only three of the four exponents [holding DF constant], this would in turn result in approximately 27,000 different combinations of exponents, meaning 27,000 different algorithms.  Since it takes our scripts several hours to execute and evaluate 100 different algorithms, a 27,000 algorithm search would take on the order of months of processing time, which we did not have.



Therefore, we used a staged approach, “zooming” in on maxima rather than using a brute-force method of testing all possible data points.



For both SYM and UDC, we first conducted broad, “4-dimensional” searches of  exponent space.  That is, we selected a small number [typically around 3-5] of widely spaced values for each exponent, and evaluated performance over all possible combinations of these values.  Our goal was to get a rough sense of the regions of highest performance for each exponent.  For example, in these initial broad searches, the CVV exponents might be {0, 1, 2, 3}, the DF exponents might be {0, 0.5, 1, 1.5, 2}, etc.



After the broad searches completed, we then selected whichever exponent combinations resulted in the best performance, and from those “points” in 4-dimensional space we conducted additional, narrower searches outward.  If, for instance, (1, 0.5, 1, 2) turned out to be the best-performing combination uncovered by our broad search, then we’d focus on CVV exponents between 0.5 and 1.5, DF exponents between 0 and 1), etc.  We’d shrink the step-size to 0.2 or 0.1, and would often vary one “dimension” (exponent) at a time while holding the other three exponents at their “peak” values.  For instance, our next search might include these combinations: 



(0.6, 0.5, 1, 2)  (0.7, 0.5, 1, 2)  (0.8, 0.5, 1, 2)  (0.9, 0.5, 1, 2)  

(1.1, 0.5, 1, 2)  (1.2, 0.5, 1, 2)  (1.3, 0.5, 1, 2)  (1.4, 0.5, 1, 2)



We might then select the best performer among these [and, of course, the previous best performer (1, 0.5, 1, 2)] and use the newfound “peak” as a starting point for subsequent exploration of the DF exponent.  For instance, if (1.2, 0.5, 1, 2) turned out to be the best performer so far, we would then search the following:



	(1.2, 0.0, 1, 2)  (1.2, 0.1, 1, 2)  (1.2, 0.2, 1, 2)  (1.2, 0.3, 1, 2)  (1.2, 0.4, 1, 2)

	(1.2, 0.6, 1, 2)  (1.2, 0.7, 1, 2)  (1.2, 0.8, 1, 2)  (1.2, 0.9, 1, 2)  (1.2, 1.0, 1, 2)



Frequently, we would try to vary more than one exponent at once, since we suspected interdependency between at least some of the components.  Our last combination search would involve a 4-dimensional search with a step-size of 0.1, but with a very small range for each exponent [typically 3-5 points each], so that the number of algorithms wouldn’t be too massive.  Examining 3 points for each exponent would require the execution and evaluation of (34 = 81) different algorithms, accomplishable in less than a day.



There are two main disadvantages to this “honing-in” combination search methodology.  The first is that since not every combination [at step-size 0.1 between 0 and some outer value such as 3 or 4] could actually be evaluated, we might have unknowingly zoomed in on a false local maximum whose “slope” upward to a higher maximum is hidden between the single decimal places we allow for exponents.  The second problem is that the resulting 4-dimensional matrix of values [one dimension for each exponent] consists of sparse, unevenly spaced data points; this makes graphical representation difficult and potentially misleading, since we must rely on interpolation between data points.



Therefore, whatever performance peaks we attained should be considered lower bounds of the actual performance attainable though exponent tweaking.  In addition, any graphs depicting the influence of components on performance should be regarded as loose approximations, illustrating broad trends rather than serving as precise predictors of actual performance.



6. Results

6.1 Peak Performance



The best performing combination for SYM that we found was (0.4, 0.3, 2, 1.7).  This algorithm gained over 96% of the performance distance between Basic CVV and CORI, making it one of the best performing algorithms we’ve seen (but still not better than CORI).  



For UDC, the best performer was (0.7, 0.4, 2, 0.7), which gained almost 92% of the distance between Basic CVV and CORI.  Only CORI beats it, among all the estimating algorithms that we’ve evaluated.



When SYM and UDC performance are averaged together, the best joint algorithm was (0.5, 0.3, 3.0, 1.0), gaining about 90% of the performance distance.  Again, only CORI outperforms this algorithm. 



Estimating

Algorithm�average R(avg)�for SYM�average R(avg)�for UDC�average R(avg)�joint��CORI�.8972�.7884�.8428��(0.4, 0.3, 2.0, 1.7)�.8953�.7394�.8173��(0.7, 0.4, 2.0, 0.7)�.8873�.7790�.8332��(0.5, 0.3, 3.0, 1.0)�.8927�.7752�.8339��ntn_ntn�.8729�.7356�.8042��Ideal(0)�.8570�.7146�.7858��CVV with QTW�.8486�.6846�.7666��Basic CVV�.8416�.6735�.7576��SBR�.8168�N/A�N/A���Note: ntn_ntn = (0, 1, 1, 2) and CVV with QTW = (1, 1, 1, 0)



As you can see, all three top-performing combinations perform better than ntn_ntn, Ideal(0), and the other listed algorithms for each of SYM, UDC, and joint.  This means that although relative performance is at least somewhat decomposition-dependent [otherwise, we’d have the same top performer in all three categories], the degree of dependence is low enough so that tailoring an algorithm via exponent tweaking to a particular decomposition doesn’t ruin the algorithm’s ability to perform well on other decompositions.  In other words, tweaking component exponents like this seems to have a “universal” and not merely decomposition-specific value in terms of performance increase.



Again, keep in mind that these “best” performances are actually lower bounds on the highest achievable performances of enhanced CVV algorithms.  It’s possible that additional searching, with increased thoroughness and exponent precision, could uncover algorithms whose performances exceed that of CORI.  Currently, however, we don’t know for sure whether such algorithms exist; the issue of whether CORI represents an effective upper bound on performance remains unanswered.



Here are graphs showing performance over SYM and UDC.  Ideal(0) has been removed from both graphs to reduce the amount of clutter.  Remember, ntn_ntn = (0, 1, 1, 2).
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6.2 Essentiality



What is the best performance you can get if you ignore a component by holding its exponent at 0 and only varying the other components’ exponents?



The following table shows the best observed performances when certain exponents were set to 0.  The second row, for example, shows the maximum observed performance when the CVV component is ignored.  The last row, depicting Basic CVV, has been included as a reference point.



CVV�Exp�DF�Exp�QTW�Exp�ICF�Exp�best SYM�performance�best UDC�performance�best joint performance��*�*�*�*�(0.4, 0.3, 2.0, 1.7) .8953�(0.7, 0.4, 2.0, 0.7) .7790�(0.5, 0.3, 3.0, 1.0) .8339��0�*�*�*�(0.0, 0.5, 3.0, 3.0) .8932�(0.0, 0.5, 2.0, 1.0) .7737�(0.0, 0.5, 3.0, 1.0) .8298��*�0 �* �* �(  * , 0.0,  *  ,  * ) .6081�(  * , 0.0,  *  ,  * ) .6017�(  * , 0.0,  *  ,  * ) .6049��*�*�0�*�(1.0, 0.5, 0.0, 2.0) .8851�(1.0, 0.2, 0.0, 0.0) .7549�(0.8, 0.1, 0.0, 0.0) .8124��*�*�*�0�(0.0, 0.1, 1.0, 0.0) .8800�(3.0, 0.5, 2.0, 0.0) .7647�(0.0, 0.1, 1.0, 0.0) .8191��0�*�0�*�(0.0, 0.2, 0.0, 1.0) .8838�(0.0, 0.2, 0.0, 0.4) .7447�(0.0, 0.1, 0.0, 0.3) .8116��0�*�*�0�(0.0, 0.1, 1.0, 0.0) .8800�(0.0, 0.1, 1.0, 0.0) .7582�(0.0, 0.1, 1.0, 0.0) .8191��*�*�0�0�(0.3, 0.1, 0.0, 0.0) .8731�(1.0, 0.2, 0.0, 0.0) .7549�(0.8, 0.1, 0.0, 0.0) .8124��0�*�0�0�(0.0, 0.1, 0.0, 0.0) .8731�(0.0, 0.1, 0.0, 0.0) .7382�(0.0, 0.1, 0.0, 0.0) .8056��1�1�0�0�.8416�.6735�.7576��

Again, these performances are lower bounds, since not all combinations of (non-zero) exponents could be searched, due to time constraints.  However, even at this rough resolution we can make some observations, from this table and from the underlying data: 



CVV appears to be the least essential component; when it is ignored, performance doesn’t diminish nearly as dramatically as when other components are ignored.  So, ICF appears to be the more useful of the two for weighting according to term rarity.�


DF is clearly the most essential component, which makes sense because it is the only component that is collection dependent.
  L
ow values for the DF componen
t result in better performance.
�



QTW 
and ICF 
appear to be helpful
, in that their presence
 
result
s 
in much better performance than 
DF alone or a 
CVV
/DF combination
.  
QTW seems to be slightly more useful than ICF, both in the overall raw numbers, and in the
 fact that whenever QTW 
can
 be 
used in finding the best performance, it 
is
 used. 
 
ICF, on the other hand, 
is
 omitted without loss
 
in 
UDC and joint for 
(*, *, 0, *).
  This might be 
an artifact 
of
 the 
lack of 
resolution 
in
 some of these searches, but the general sense is that 
ICF isn
’t as 
necessary
 as QTW, 
especially when CVV is present [
which it is in 
(*, *, 0, *)].





6.3 Other Observations



We can also observe from the raw performance data that DF
 by itself
 performs better as its exponent steadily decreases:
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As we decrease the DF exponent, we decrease the degree to which individual DF values influence the merit calculation.  For example, assume that queryX is “cat dog fish”, DF“cat”,collA = 16, DF“dog”,collB = 9, DF“fish”,collB = 4, and all other DFs are 0.  If the DF exponent is 1, then meritqueryX,collA = 16 and meritqueryX,collB = 9+4=13, so collA will be ranked higher than collB.  If the DF exponent is lowered to 0.5, then meritqueryX,collA = 4 and meritqueryX,collB = 3+2 = 5, so collB will be ranked higher than collA this time.



The fact that performance improves as we decrease the DF exponent implies that in a DF-dependent algorithm, its might be useful to pay more attention to co-occurrence of query terms within a collection and less attention to the magnitude of the individual term [document] frequencies.



Note that as long as the DF component is present, no matter what other components are omitted we can still tweak the contributions of the existing components in such as way as to handily outperform the Basic CVV algorithm.  This is most likely due to Basic CVV’s DF component being set too high (at 1.0).  Other algorithms that use a DF component in their calculations might also benefit from having the influence of the DF similarly reduced.



6.4 Open Questions



We still do not know whether CORI represents an upper bound on performance.  How much would other algorithms’ performances improve if we tweaked them by breaking them up into components and varying their degrees of contribution?  Would CORI’s performance improve significantly [making it even more difficult to beat], or is CORI already in an optimized state?  Would increasing the precision of the exponents beyond a single decimal place enable us to outperform CORI?



Also, how can we improve our existing combination search methodology?  Would it be worthwhile to automate these searches using adaptive programming?  Is there a theoretical possibility of multiple local maxima, so that a brute-force, point-by-point evaluation is the only means of isolating the best possible performance?



Are there additional query characteristics (other than query term weights) or even collection characteristics that can be used to further optimize selection algorithms?



7. Conclusions



We have implemented the Basic CVV database selection algorithm and evaluated its performance relative to that of other estimating algorithms.  We have designed, implemented, and evaluated various enhancements to the Basic CVV algorithm.  We have guided these enhancements into ultimately producing a set of algorithms which performed very well within our test environment (relatively speaking), outperforming all previously evaluated algorithms with the exception of CORI.  



We have additionally gained insight into the potential usefulness of including various factors (such as query term weights, inverse collection frequencies, and cue-validity variance) in merit calculations.  We have also provided a framework and perhaps inspiration for future component-based optimizations of database selection algorithms.
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