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�0. Introduction



This document (in MS-Word format) and all relevant source code, executables, scripts, input files, and output files are available online in: ~te3d/cs661/ttt/ 



0.1 Raison de Etre



The goal of this project was to explore two different algorithmic techniques that we didn’t get to cover in class (these are Neural Networks and Genetic Programming).  I used the game of Tic-Tac-Toe as the “problem” and looked at different ways of solving various parts of the problem.



0.2 Document Overview



This document is part design document, part status report, part user’s manual, and part to-do list.  It is split into several sections:



Although the Table of Contents might make it look like a reference manual, this document is meant to be read linearly (as if it were a book).



Section 0 is this Introduction.



Section 1 describes all of the Object Classes.  Although it sometimes goes into specific programming details, its main purpose is to provide a gradual, logical introduction to the different concepts, design decisions, and user interfaces involved in this project.  When appropriate, this section also mentions future plans.



Section 2 deals with the needed Input Files, and provides examples.



Section 3 talks about the different command-line Scripts that I have been using to run TTT, and show some of the results from certain test cases.



Section 4 discusses any Future Plans I have for TTT that I didn’t already mention in the previous sections.



1. Object Classes



TTT is composed of several different object classes and main program.  The following sections discuss each of these objects, intermingling general design concepts, program output, user input, future plans, and specific programming techniques.  (The objects are treated as a starting point for various areas of discussion).

�1.1 Debug

(see debug.h and debug.cc)



Every class in my program inherits from the Debug class.  Debug is used to facilitate run-time debugging, as well as provide different levels of text output to the user.



A Debug object is essentially a name and a set of commonly called methods like Print(), SetName(), GetName(), etc.  A Debug object also has a debugging level associated with it.  The higher the debugging level, the more verbose the text output.



I have chosen to make the current debugging level for an object globally accessible instead of specific to a class.  Initially (on my PC), I used a static data member to keep track of the debug level; this static declaration did not work under UNIX, however, so I use a global integer debug instead of a static member.  Since debug would normally be local to every class (as every class inherits from Debug), none of the references to debug needed to be changed.



Every time I create an object, I assign it a name; this name is stored in the Debug.name data item.  I also have something called a peek_value; this is currently only used when a human player wants to “peek” at a neural network’s state during a game.  peek_value’s usage can later be expanded to allow the human user to peek into other objects’ operation such as the traditional player’s look ahead move finding.



I created a macro called DEBUG(x), which lets me conditionally write text output.  Since this is so essential to understanding the Debug object, I’ll quote from the current version of the source code:



#define DEBUG(a)  if (debug >= a) cout



An example of usage would be:



DEBUG(3) << “If you can read this, the debug level is at least 3.\n”;



If the (global) debug level were 2 or less, this message would not print.  If the debug level were 3 or more, this message would be printed to standard output.



The Debug class’s Methods are all virtual and therefore overridable except for the constructors and destructor.  (Most of these methods are indeed overridden, since the default implementations of the methods are not very useful).



GetName	- returns the name (string) of the object

Peek	- lets human user peek into an object’s state

Print	- prints state of object to standard output (optional debug level parameter)

SetName	- sets the name of the object.

�1.2 Board

(see board.h and board.cc)



A Board is a rectangular grid (i.e., a matrix with 2 dimensions: X and Y).  In the standard version of Tic-Tac-Toe, the board is 3x3.  Other variants might use boards that are 2x2,  2x3, 19x17, etc.



Each coordinate on the board, which I often call a “square,” has an owner or “color” associated with it.  Standard Tic-Tac-Toe has three owners: EMPTY, ‘X’ and ‘O’.  My game is designed around supporting more than two players, so I have enumerated ownership: ‘0’, ‘1’, and ‘2’ for EMPTY, player 1, and player 2, respectively.  A third player would be designated ‘3’, a fourth would be ‘4’, etc.  This “coloring” scheme can be extended past 9 players via ‘a’, ‘b’, ‘c’, etc.



Here is how the standard Tic-Tac-Toe board looks when it is printed to standard output:



standard: 2|2|0

          -+-+-

          1|1|1

          -+-+-

          0|1|2



Player 1 has just won the game (assuming we are playing by standard rules) by getting a horizontal line across the middle.  The corresponding coordinates are expressed in (x,y) format and are: (0,1), (1,1), and (2,1).  The northeast (2,0) and southwest (0, 2) corners are considered EMPTY.  The label “standard” indicates the name of this particular board.



Boards have several member methods (in addition to the Debug methods, since Boards inherit from Debug). All are self-explanatory if you look at the header file, except perhaps for GetMatch() and GetWinner().  These compare the Board’s state to a list of other boards.  If there is a “match,” GetWinner() returns the color that matched; otherwise it returns EMPTY (‘0’).  This gets into the subject of win_boards, which I’ll talk about in the Game section (see Section 1.3).



Also, when scanning and setting the Board, I frequently use a macro called ITERATE() (see common.h) which is shorthand for a two-dimensional loop, to cycle through all the coordinates:



#define ITERATE(type,a,b,A,B)   \

        for (type a=0, b=0; a<A && b<B; b += (++a >= A), a = a % A)



This macro is convenient and safe programming-wise and hopefully makes the code easier to read.

�1.3 Game

(see game.h and game.cc)



A Game is a particular Tic-Tac-Toe variation.  It is defined by a board, a set of rules, and a set of players.



The board, or game board, was discussed in Section 1.2.  The players will be discussed in Section 1.4.



The rules are really a set of boards called win_boards.  All my game variations have the same basic goal for a player: to match one of the win_boards.  For example, Tic-Tac-Toe’s standard rules are described by the following win_boards:



Win Board 0: 1|1|1



Win Board 1: 1

             -

             1

             -

             1



Win Board 2: 1|0|0

             -+-+-

             0|1|0

             -+-+-

             0|0|1



Win Board 3: 0|0|1

             -+-+-

             0|1|0

             -+-+-

             1|0|0



If any player matches all the ‘1’s on one of the win_boards with his color on the game board, (s)he wins.  [From now on I will say ‘he’]  Note that the first two win_boards have different dimensions from the main game board.  They are therefore to be matched to a subportion of the main board.



All three of Game’s data items (board, rules, and player assignments) are read in from files.  The board and rules are in the rules_file, and the player assignments are in the players_file.  When a Game is created, the associated rules_file and players_file (in addition to the Game’s name) must be specified.  The constructor calls the methods LoadRules() and LoadPlayers(), which are responsible for reading in the actual rules and player definitions.



Run() starts up either a game, a series of games (called a match), or a series of matches.  It coordinates with the Referee (Section 1.5).  PrintWins() prints the number of wins each Player has so far (the program typically runs more than one game per execution).

�1.4 Player

(see player.h and player.cc)



A Player is a participant in the game.  There are several types of Players.  From player.h:



Referee      - moderator, responsible for enforcing game rules

HumanPlayer  - human player (a user/tester of the program)

TradPlayer   - "traditional AI" player using top-down logic

NeuralPlayer - "neutral net AI" player using bottom-up logic



These are each described in subsequent sections (Sections 1.5 - 1.8).  There is only one Referee present in a game, but there can be (theoretically, though it has not yet been implemented) any number of the other types of players.



Any Player (game participant) knows (but may choose to ignore) certain pieces of information about the game or set of games in which he is involved.  He knows the current shape and state of the game board, the current rules (win_boards), the other players involved, the current game turn (or game or match number if multiple games/matches are being played), and his current tally of wins, losses, and draws.



Each Player has a number of methods associated with it.



ShowRules() and ShowPlayers() are used to “introduce” participants to the game rules and other participants, respectively.



TakeTurn() is called once per game turn by the Referee (see Section 1.5) or, if the Referee’s own GetMove() method is being called, by the Game.Run() method.  In the case of the Referee, this method is responsible for prompting for and processing each of the moves of the other Players.  For the individual players, this repeatedly calls GetMove() and tries to make the move by calling the Referee.Move() function, until a legal move is made (or until we give up or exceed a MAX_ATTEMPTS count, in which case we “pass” for our turn).



GetMove() is called by TakeTurn() and.  GetMove()’s job is to find out what the player’s nest move on the game board will be.  Since each type of Player determines his next move in a unique way (HumanPlayers are directed by user input, TradPlayers use traditional AI look-ahead or magic formulae, NeuralPlayers consult a neural network, etc.), this method is declared pure virtual. 



NewGame() signals the player that it’s time to start a new game.  Usually this just involves incrementing a game counter and resetting the turn counter (incremented usually by TakeTurn()) to 0.



NewMatch() is similar, but also sets the game count to 0 and is more frequently overridden.  (For example, for the NeuralPlayer, NewMatch() also resets all of the link weights in the neural network.)



Feedback() is used for providing feedback about a move to the Player.  If the Player is a human, this is basically messages like “You Win” or “You Lose” or “Invalid Move.”  If the Player is a NeuralNetwork, this method is responsible for determining whether and how to reinforce/punish the neural network.  It also is responsible for updating the tally of wins, losses, and draws.



The above methods are all overridable (tailorable to each specific Player type including the Referee).  There are also a few non-overridable methods:



GetNumDraws(), GetNumLosses(), and GetNumWins() are all used to provide score tallying information back to the Game.



ResetScores() resets the above tallies, and is usually called at the start of each match by the Game.Run() method.





�1.5 Referee

(see referee.h and referee.cc)



(From referee.h:) The Referee is a participant just like the other players.  However, the referee wields more power and responsibility.  Its job is to keep the game moving by prompting the players to take their turns [TakeTurn()], making sure the players adhere to the rules [Move()], and informing the players about how well they are performing [Feedback()].  You can think of the Referee as the friendly liaison between the game rules and the game players.



I decided to implement the Referee as a type of Player because he has the same game information as they do (board, win_boards, other players, etc.) and the same methods are needed to communicate that information to the Referee.  Also, I liked the idea of having the Referee be a visualizable automaton just like the other Players.



The Referee’s sole job is to instigate and moderate games. It doesn’t care which types of Players are participating, how many games will be eventually played, where the current set of rules came from, whether or not we’re running in interactive mode, or any of the higher level meta-game considerations.



Almost all the Player methods are overridden by the Referee class, since it is concerned with getting each Player to perform the appropriate functions rather than just itself.



There is one new method:



Move() - this is called by the other Players when they have selected a move (via GetMove()) and want to execute it.  If the move is not valid (say, if the move is to a square which is already taken, Referee returns an error).



�1.6 HumanPlayer

(see hplayer.h and hplayer.cc)



A HumanPlayer is a Player whose operation is controlled by the user.



All moves are dictated by the user, and are expressed as an (X,Y) coordinate.  Each turn, the user is prompted with a representation of the board state and a prompt:



-------------------------------------------------------------



TURN #4



standard: 2|2|0

          -+-+-

          1|1|0

          -+-+-

          0|1|2



Enter x[0-2] and y[0-2] coords or 'h'elp, 'p'eek, 'q'uit:



If the HumanPlayer is Player 2, he can win by playing the upper right hand (or northeast) corner.  To move to the northeast corner [coordinate (2,0)], the user types “2 0” followed by a RETURN at the prompt.  (If he is Player 1, he will want to type “2 1” to complete the middle row).



Instead of entering a move via a pair of coordinates, the user can type in one of the following special commands:



If the user wants to quit, he types “q” and then RETURN.  This quits the current game, match, and set of matches, and exits the program.  A final score tally for the current (the last) match will be printed.



If the user types “h”, a help menu will appear.  This provides some instructions on how to make a move, and what the goal of the game is (it displays the win_boards).  For now, this online help is pretty rudimentary, but it can be expanded later.  A “suggested moves” feature would be fairly easy to implement and could serve as a Tic-Tac-Toe trainer (for anyone who actually needs it).



If the user types “p”, he enters peek mode.  This lets the user “peek” into the brain of a NeuralPlayer.  In other words, it lets the user examine the state of the NeuralPlayer’s neural network.  You can currently only Peek into NeuralPlayers; I might later expand this to allow the user to Peek into TradPlayers’ look-ahead operations.��An example of how Peek is used appears on the following page (comments are in italics):

�

Enter x[0-2] and y[0-2] coords or 'h'elp, 'p'eek, 'q'uit: p



###############################################################



PEEK: NeuNet's current state:



            L A Y E R S

  Node     0     1     2

  ----   ----- ----- -----

   0      1.00  0.61  0.16

   1      0.00  0.69  0.15

   2      1.00  0.52  0.18

   3      0.00  0.39  0.81

   4      1.00  0.25  0.35

   5      0.00  0.86  0.08

   6      1.00  0.61  0.40

   7      0.00  0.17  0.58

   8      1.00  0.10  0.32

   9      0.00  0.90

   10     1.00  0.15

   11     0.00  0.07

   12     1.00  0.66

   13     0.00  0.72

   14     1.00  0.04

   15     0.00  0.78

   16     1.00  0.35

   17     0.00  0.75

   18           0.49

   19           0.88



Choose a layer and a node - I'll show you the node's links...

  Enter layer [0-2] or 'q' to quit: 1  (Want to look at the hidden layer)

  Enter node [0-19] or 'q' to quit: 10 (Want to look at node 10’s links)



1.10 level/activation = 0.150844



       I N P U T   L I N K S             O U T P U T  L I N K S

     Node     Level  Weight Contrib       Node     Level  Weight Contrib

  ----------  -----  ------ -------    ----------  -----  ------ -------

  0.0         1.00 * -0.22 = -0.22     2.0         0.15 *  0.68 =  0.10

  0.1         0.00 *  0.31 =  0.00     2.1         0.15 * -0.22 = -0.03

  0.2         1.00 * -0.29 = -0.29     2.2         0.15 *  0.16 =  0.02

  0.3         0.00 *  0.69 =  0.00     2.3         0.15 * -0.99 = -0.15

  0.4         1.00 *  0.17 =  0.17     2.4         0.15 *  0.76 =  0.12

  0.5         0.00 *  0.43 =  0.00     2.5         0.15 * -0.40 = -0.06

  0.6         1.00 * -0.82 = -0.82     2.6         0.15 *  0.19 =  0.03

  0.7         0.00 * -0.31 = -0.00     2.7         0.15 *  0.03 =  0.00

  0.8         1.00 *  0.36 =  0.36     2.8         0.15 * -0.60 = -0.09

  0.9         0.00 *  0.53 =  0.00

  0.10        1.00 *  0.81 =  0.81

  0.11        0.00 *  0.44 =  0.00

  0.12        1.00 * -0.37 = -0.37

  0.13        0.00 *  0.81 =  0.00

  0.14        1.00 * -0.46 = -0.46

  0.15        0.00 *  0.03 =  0.00

  0.16        1.00 * -0.91 = -0.91

  0.17        0.00 * -0.56 = -0.00



  Enter node [0-19] or 'q' to quit:



You can then specify another node to look at, or ‘q’uit and look at a different layer, or then ‘q’uit again to leave peek mode.  See Sections 1.10 - 1.12 for more about Nodes, Links, and Layers, respectively).

�1.7 TradPlayer

(see tplayer.h and tplayer.cc)



A TradPlayer is a Player whose moves are selected by a “traditional” (top-down) AI.  



There are currently two different algorithms that a TradPlayer can use to select a move.  The first algorithm, Magic Formula, is fast, but only works with the standard Tic-Tac-Toe rules, and has a “quirk” which makes it an ineffective NN trainer.  The second algorithm, Look Ahead, is general and “quirkless,” but is very slow.



Neither algorithm is optimized as far as obtaining the highest number of wins.  Instead, they try not lose.  If an easy win opportunity opens up, they will of course take it, but they don’t take any risks, and don’t try to be sneaky or take advantage of an opponent’s habits. 



Also, both algorithms try to use randomness whenever possible.  When one move is judged to be just as good as another, the TradPlayer randomly decides which move to make; sometimes there are large sets of equivalent-value moves.  Random tie-breaking helps make TradPlayer a more effective trainer for NeuralPlayers, and also increases the amount of variety in games against a human opponent.



A description of each of the move-choosing algorithms follows, along with a section concerning ability levels.



1.7.1 Magic Formula



The initial version of TradPlayer used an algorithm that is specific to the standard Tic-Tac-Toe board and rules, but which runs very quickly.  I call this algorithm “Magic Formula” because it’s kind of confusing to decipher and must be followed blindly.



1.7.1.1 Algorithm



Magic Formula first calls GetEasyMove(), which calls the EvaluateMove() routine for each empty coordinate on the board.  EvaluateMove(), at that early point in the development, simply returned a high value (WIN) if a move to that coordinate would result in an immediate win, a medium value (BLOCK) if it would block the other player, or a low value (DRAW) otherwise.  If any coordinate ended up having a WIN or BLOCK value, it would be selected as the TradPlayer’s next move (WINs are of course given priority over BLOCKs).



If all valid moves (moves to empty squares) are evaluated as DRAWs, then TradPlayer calls GetHardMove().  This method is used to select moves whenever we’re in an ambiguous situation.  It is this method which provides the “magic formula” which enables the TradPlayer to never lose a game.



1.7.1.2 Limitations



There are two problems with the Magic Formula algorithm, and they both involve its excessive specificity.



First, Magic Formula only works with the standard Tic-Tac-Toe rules, and not for any other Tic-Tac-Toe variants.  My intent is to get TTT to run with different Tic-Tac-Toe variants, each variant having a different board, different rules (win_boards), and/or a different number of players, so Magic Formula has limited value in the long run.  Writing a different Magic Formula for each conceivable Tic-Tac-Toe variation is not viable.



The second problem is that when used for training a NeuralPlayer’s neural network, the Magic Formula algorithm often results in incomplete training.  This is because one of its speed-optimizing shortcuts is to always take the center coordinate first (if it’s not already taken by the opponent). 



Though Magic Formula randomly selects between equivalent-quality moves in all turns except the first, the end result of using Magic Formula is that the NeuralPlayer will learn only how to avoid losing against players who always play in the center square first.�

If a human player intentionally avoids playing in the center, he will probably end up beating the NeuralPlayer (as Jim did during the first game he played against a so-called “perfectly trained” NeuralPlayer), regardless of how flawlessly the NeuralPlayer learned to defend against the TradPlayer’s Magic Formula.



Despite these serious problems, for testing purposes TTT still has the ability to use the Magic Formula, although it is not a command line option or anything the user can specify.  Instead, I added a series of “#ifdef NO_LOOK_AHEAD” clauses to sections of the tplayer.cc source code.  If you compile TTT with NO_LOOK_AHEAD defined, it produces an executable that uses Magic Formula instead of Look Ahead.



The current NO_LOOK_AHEAD executable is called ttt_nla, and can be run exactly like ttt.  Since Magic Formula will inevitably be phased out in the long run (as it is incompatible with non-standard variants), I have no intentions of making NO_LOOK_AHEAD a full-fledged, run-time option. 





1.7.2 Look Ahead



In response to Magic Formula’s “quirk” and as an effort to generalize TradPlayer’s strategy in preparation for upcoming operation on different variants, I developed a new algorithm which I called “Look Ahead”.



1.7.2.1 Algorithm



In Look Ahead, the TradPlayer examines the current board, hypothesizes a move, contemplates all the potential response moves from the opponent, hypothesizes our moves in response to that, etc. Look Ahead proceeds recursively, examining hypothetical board state after hypothetical board state.



It looks at one “depth” at a time.  For instance, the first thing it does is try to find an immediate WIN move on any square of the board.  Failing that, it tries to find any immediate BLOCK. These steps were at depth 1.  For depth 2, it proposes a move, and then for each of the opponent’s possible response moves, it then looks for immediate WIN and BLOCK moves (back to depth 1).  For depth 3, it proposes a move, looks at each opponent response, proposes a move in response to that, looks at the opponent’s responses, and then looks for immediate WINs and BLOCKs.



This “gradual descent” approach keeps us from analyzing any coordinate any deeper than what is absolutely necessary.



Look Ahead can deal with any Board and any rules set (win_boards), and does not place any bias on moving to the center coordinate first.  This is because it is “smart” enough to force a draw from any starting position.  (In fact, it can get away with randomly selecting the first move, which is helpful because the first move, with the most open spaces, takes the longest to process using Look Ahead.)



1.7.2.2 Limitations



Although Look Ahead is more flexible, and in fact easier to program than Magic Formula, it currently runs much slower (possibly a couple of orders of magnitude).  This slowdown is very serious, because neural network training involves NeuralPlayers and TradPlayers competing in what is frequently millions of games.



Magic Formula was already taking a few days to adequately train the neural networks.  Therefore, unless I can find a way to significantly speed up Look Ahead processing, its usage, in as far as neural network training is concerned, is impractical.



1.7.3 Ability Levels



TradPlayers come in a variety of ability levels.  These include (from tplayer.h): 



#define IDIOT    0  

#define ROOKIE   1 

#define AVERAGE  2 

#define SKILLED  3 

#define EXPERT   4 

#define PERFECT  5



Ability level affects move selection in two ways.



1.7.3.1 Evaluation Depth (Planning)



Assuming Look Ahead is used, ability level determines the depth to which TradPlayer will evaluate potential moves.  PERFECT will always examine moves to the maximum depth (a function of the number of empty spaces remaining on the board).  The formula (from tplayer.cc):



max_depth = (board->MovesLeft() * ability) / (PERFECT * 2);



So, AVERAGE and SKILLED will evaluate moves to approximately half the depth of PERFECT.  IDIOT will evaluate to depth 0; it doesn’t really consider moves to any depth; it simply randomly picks a valid move, ignoring even immediate WIN and BLOCK opportunities.



1.7.3.2 Mistakes (Accuracy)



Ability level also determines the likelihood of TradPlayer making a mistake during a given game turn.  The chances of making a mistake are 1 in (1 + 4 * ability2) for each turn  The only ability level that cannot make a mistake is PERFECT. 



When a TradPlayer makes a mistake, it “overestimates” the value of a move.  The move must be valid, of course (the square must be empty).  The amount of overestimation is random and is usually either one or two quality levels (from DRAW to BLOCK, or DRAW to WIN, etc.)



I have created a script which shows how the different ability levels fare against each other when competing in a “deathmatch” (see Section 3.1 : DeathMatch).



�1.8 NeuralPlayer

(see nplayer.h and nplayer.cc)



A NeuralPlayer is a Player whose moves are dictated by a neural network.  It interfaces with the Referee in the same way as the other Players, but, unlike the other players, is also interfaced directly by the Game class (or, more precisely, by the School class, which is derived from the Game class - see Section 1.14).



A NeuralPlayer has two files associated with it: a NN architecture file (arch_file), which specifies the neural network’s architecture, and a NN weights file (wts_file).  It also keeps track of the number of inputs to and outputs from the neural network; these are related to the size of the game board.  It also has pointers to the underlying neural network and its architecture, so that it can interface with them.



There are also several new or overridden methods:



Feedback() is responsible for reinforcing (punishing) the neural network whenever the NeuralPlayer loses a game or makes an invalid move.  It doesn’t do anything in the case of a win or a draw (“if it ain’t broke…”)



NewMatch() now automatically resets all the link weights in the neural network (in other words, it resets the learning process). If the neural network has not yet been created, NewMatch() calls BuildNet().



BuildNet() builds a neural network given the current neural network architecture.  The architecture is loaded when the NeuralPlayer constructor is called (arch_file and wts_file are constructor arguments).



GetArch() returns a pointer to the current neural network architecture.  This is called by School, which needs to obtain access to the architecture in order to mutate it.



Save() is called by School and is used to tell the neural network to save its current architecture and state.  The School class calls this whenever an “optimal” NN architecture and state has been found.



If a human player ever peeks into a NeuralPlayer’s state, then the next time the NeuralPlayer is supposed to reinforce its neural network, it asks the user if he wants to peek at the neural network before and/or after the reinforcement.



Details about the neural network are in the following sections.



�1.9 Arch

(see nn_arch.h and nn_arch.cc)



An Arch object describes the current architecture of a neural network.



Note: I will assume you know how neural networks work, what nodes, links, and layers are, and how they compose the network.  The same goes for activation functions, delta functions, hidden layers, and back-propagation.



My program uses a traditional back-propagation network with one hidden layer.  (It can, in fact, handle any number of hidden layers, but I haven’t tested on any more than one; theoretically, you can perform any computation using only one hidden layer.)



The activation function is described in Section 1.10: Node.  The delta (learning) function is described in Section 1.11: Link.



Arch contains those characteristics of the NN architecture which are “tweakable.”  They can be read in via the Load() method from an architecture-specifying input file (arch_file), and can be saved via Save().



The architecture can be also mutated via Mutate().  Mutation is “random” tweaking of the architecture characteristics.  SetMutationRate() specifies the approximate chance of a characteristic being mutated when Mutate() is called.  Both Mutate() and SetMutationRate() are called by the School class (see Section 1.14: School) - SetMutationRate() is usually called once (at the beginning of program execution), but Mutate() is called at the start of every session.  Copy() copies on architecture to another.  This is used for saving and restoring (in memory) temporary architecture configurations when searching for the “best” architecture.



The architecture characteristics are: learning rate, momentum, maximum link weight, minimum link weight, number of hidden layers, and number of nodes in each hidden layer.   These are all common neural network architecture parameters, and will not be described here.



There are three other characteristics that I came up with:



encouragement is the “paths not taken” goal; whenever punishment occurs, the goal for the output node associated with the selected (bad) move is 0, and the goal for all other output nodes is set to encouragement.  This is usually around 0.1.  It can mutate.



act_add and act_numerator are constants used in the activation function.  I currently don’t allow them to mutate, because if they are not properly synchronized, they can boost the activation level to above 1.0, which ruins the network.

�1.10 Node

(see nn_node.h and nn_node.cc)



A Node is a component of a neural network (see Section 1.13: NeuNet for a description of the complete neural network).  It is also known by the names “neuron,” “neurode,” “cell,” and “unit.”



It consists of an activation level, an error level, a delta value, and a set of pointers to associated input and/or output links, as well as one to the neural network architecture, from which it obtains certain “activation rules.”  All except the pointer to the architecture are standard neural network data items, and will not be described here.



ComputeLevel() computes the current level of activation based on the following activation function (from nn_node.cc):



level = arch->act_numerator / (1 + exp (-total)) + arch->act_add;



total is the sum of all the contributions from the input links, where the contribution of a given link is equal to its weight times its source node’s current activation level.  The two activation function constants, act_numerator and act_add, are currently hardwired to 1 and 0, respectively.



Nodes in the input layer (Layer 0) each have one output link to each node in the first (and currently only) hidden layer (Layer 1).  Input nodes have no input links.  Their values are set by NeuralPlayer.



The number of input nodes is (num_players * size_x * size_y) where num_players is the number of players in the game (currently 2) and size_x and size_y are the dimensions of the board.  So, for standard Tic-Tac-Toe, there are (2 * 3 * 3 = 18) input nodes.  If Player n owns coordinate (x,y), then input node j will be set to 1, where:



j =  ((y * size_x + x) * num_players) + n



This is done for each player-owned coordinate on the board.  All other input node’s levels are set to 0.  The number of output nodes is simply the number of squares on the board (size_x * size_y).  The output node with the greatest level determines our move.



Output nodes have an input link from each node in the last (and currently only) hidden layer, but no output links of their own.  Hidden nodes have input links from each of the nodes in the previous layer (in this case, the input nodes), and output links to each of the nodes in the next layer (in this case, the output nodes).



Errors are computed as distances from the output node’s goals.  AddError() is used for adding up the errors in the earlier layers’ links.  (standard NN, won’t go into details)

�1.11 Link

(see nn_link.h and nn_link.cc)



A Link is a component of a neural network (see Section 1.13: NeuNet for a description of the complete neural network).



Links have weights and adjustment values.  They also have pointers to source nodes, destination nodes, and, in my program, a pointer to the neural network architecture.  Everything except the pointer to the architecture is standard neural network link data, so I don’t discuss it here.



The delta (learning) function is applied in Train() and is standard back propagation.  (From nn_link.cc:)



adjust = (arch->learning_rate * dest->delta * source->level)

       + (arch->momentum      * adjust);



weight += adjust;

weight = MAX (arch->min_weight, MIN (arch->max_weight, weight));



source->AddError (weight * dest->delta);





dest->delta is the delta component of the destination node.  source->level is the activation level of the source node.  Note that the adjustment is conserved according to the momentum.  The third statement shows the application of the max and min link weight boundaries.



The rest of the link class is pretty straightforward.

�1.12 Layer

(see nn_layer.h and nn_layer.cc)



A Layer is a component of a neural network (see Section 1.13: NeuNet for a description of the complete neural network).



A layer is a set of Nodes.  Each Node has output links to Nodes in the next layer, and input links from Nodes in the previous layer.



Layer 0 is the input layer (see Section 1.10: Node for information about input nodes).



Layer 1 is currently the one and only hidden layer.  Its number of nodes is determined by the architecture.



Layer 2 is the output layer (see Section 1.10: Node for information about output nodes).



Conceivably, a NeuNet can have more than one hidden layer.  Also, since the number of hidden layers is part of the architecture, and appears in the arch_file, it can be mutated.  I have not yet explored the possibilities of multiple hidden layers.



�1.13 NeuNet

(see neunet.h and neunet.cc)



A NeuNet is a complete neural network.  It consists of Layers, which in turn consist of Nodes, which have input and output Links.



A NeuNet also has an associated architecture.  Some of the characteristics of the architecture determine how the neural network is to be “physically” constructed (i.e. number of nodes in each hidden layer).



The NeuNet constructor is responsible for building the neural network.  It is passed a name, an architecture, and a number of input and output nodes.



RandomizeWeights() sets all the link weights to random values.  These values are between the minimum and maximum link weights specified in the architecture (see Section 1.9: Arch).



Load() loads link weights from a file.  This is primarily used after a neural network has been already trained.  Note that the read-in weights much correspond with the current architecture.  I’ve added some “sanity checks” to make sure we’re reading in the correct number of weights from the file.



Reinforce() reinforces the neural network.  It is called by a NeuralPlayer’s Feedback() method.  It tells each node (starting with the last layer first) to update its error and delay values (based on their current levels and the output goals) and then reinforces the input link weights appropriately.



SetInputLevel(), GetOutputLevel(), and SetOutputGoal() are all used to set levels or goals on the input and output nodes.



Run() propagates the input levels through the network (using the activation function described in Section 1.10: Node).



Each turn, NeuralPlayer calls SetInputLevel() to set all the input nodes to reflect the current board state, then Run() to run the network, and then GetOutputLevel() to get the appropriate move.  If the move was legal and didn’t result in a loss, nothing is changed in the network. Otherwise, if the move was bad, NeuralPlayer calls SetOutputGoal() for each output node to show the “appropriate” response, and then Reinforce() to get the network to modify its link weights.



We do this over and over again until the neural network learns how to play the game.



�1.14 School

(see school.h and school.cc)



The School class derives from Game (see Section 1.3: Game), and is used for training NeuralPlayers.



TTT runs in one of two modes: Game Mode and School Mode.  Each mode uses the associated class (Game or School, respectively) to load the rules and player assignments, initialize any data structures, and then run the program for a number of games and matches.



1.14.1 Game Mode



Game Mode runs two (or conceptually more, though I have not yet tried it) Players against each other for a number of matches.  Each match consists of a number of games.



At the end of each match, we print out a tally of the number of games won by each Player:



*** Wins:  Draws (2)    Trad_Perfect_1 (8)      Neural_2 (0)    ***



In this example, 10 games have been played so far.  The TradPlayer won 8 of the games, the NeuralPlayer won 0 games, and there was a draw in 2 of the games.  If the debug level is set high enough, this win tally will be printed after every game, and not just at the end of the match.



In Game Mode with a NeuralPlayer, each time we start a match, we reset the neural network’s link weights either by reading them in from a file (if a weights file was specified in the player configuration file) or else to random values.



A Note About Learning in Game Mode:



In principle, there should be no neural network learning in Game Mode, since Game Mode is designed for evaluating players rather than training them.  In practice, however, I currently do allow learning during Game Mode, because none of my neural networks so far have exhibited “perfect” game playing ability; this lack of perfection can result in game-ruining behavior if left unchecked.



If a NeuralPlayer makes a mistake such as an invalid move (which is entirely plausible, because NeuralPlayers have to learn which moves are invalid, just like they have to learn which moves result in losses), then unless I allow the NeuralPlayer to be “punished” for his invalid move, he will continue to try to make the same invalid move over and over again (since given the same inputs, and no changes to the internal state of the neural network, you will always get s the same outputs).



This “sphexishness” greatly slows down the game, and actually invalidates it, because repeated invalid moves eventually result in a pass (after MAX_ATTEMPTS) and in the standard, “real-life” Tic-Tac-Toe rules, there is no such thing as a pass.



1.14.2 School Mode



School Mode, on the other hand, is specifically for training NeuralPlayers.  There are two phases to School Mode.  In the first phase, we are trying to find the “best” neural network architecture.  In the second phase, assuming we’ve located an optimal architecture, we try to find the best set of link weights for that architecture.



1.14.2.1 Finding the Best Architecture



The first phase is handled in the FindBestArch() method.  It consists of a user-specified number of sessions.  This number always be greater than 0.  Otherwise, TTT runs in Game Mode.



A session consists of a set of matches throughout which the neural network architecture remains the same.  At the beginning of each match, the neural network’s link weights are reset to random values.  A use-specified number of games are played using these new link weights (which can be adjusted during the games via reinforcement).



At the beginning of each session (except for the first session), the neural network’s architecture is mutated (see Section 1.9: Arch) and then printed to the screen.  At the end of each match in the session, the NeuralPlayer’s losses are displayed, both as a “loss bar” and as a numerical breakdown.  At the end of the session, the final session loss rate is printed, along with whether or not the loss rate has improved since the previous session.  Here is an example out output during School Mode:



NN Arch mutating:  [learning rate]   ( We mutated the learning rate for this session.



****************************** Session #11 *************************



NN Arch configuration:

  1 hidden layers:

    layer[1] has 20 nodes

  Learning Rate  = 0.3978	( This has changed since last session.

  Momentum       = 0.9

  Encouragement  = 0.1

  Minimum weight = -1

  Maximum weight = 1

  Act numerator  = 1

  Act add        = 0



Splitting matches (1000 games each) into 10 periods of 100 games each



Neural_2 replacing its old NeuNet...

s11.m1  Losses:    |0001111222233344445566677788889999                | 68%

s11.m1  Breakdown: 0:74 1:74 2:72 3:70 4:71 5:57 6:55 7:65 8:67 9:79    Total:684/1000

s11.m2  Losses:    |000111122233334445555666777888999                 | 67%

s11.m2  Breakdown: 0:71 1:70 2:73 3:70 4:70 5:66 6:61 7:65 8:66 9:65    Total:677/1000

s11.m3  Losses:    |00011122233334445556667778888999                  | 64%

s11.m3  Breakdown: 0:71 1:60 2:68 3:64 4:57 5:64 6:68 7:60 8:69 9:68    Total:649/1000

s11.m4  Losses:    |00011122223333444555566677778889999               | 70%

s11.m4  Breakdown: 0:69 1:69 2:71 3:73 4:72 5:68 6:70 7:69 8:71 9:74    Total:706/1000

s11.m5  Losses:    |00011112223333444555566677778889999               | 71%

s11.m5  Breakdown: 0:66 1:82 2:68 3:70 4:69 5:67 6:72 7:68 8:72 9:81    Total:715/1000



Session loss rate = 68% -- got worse, restoring old arch...



Here you see five matches being played in session number 11.  Match 1 is represented by s11.m1, match 2 is s11.m2, etc.  Each match is divided into ten periods (numbered 0 through 9).  Each period has an equal number of games.  In our example, each match consists of 1000 games, so each of the periods has 100 games.



The Loss Bar is the series of 0’s, 1’s, 2’s, etc. that appears after the “Losses:” label.  Each digit represents (roughly) a number of losses within a period.  Since the loss bar is currently 50 characters wide, each digit represents 20% losses within a period (20% times 100 games is 20 games, so each digit represents 20 losses).  The Loss Bar gives a “feel” for how much the neural network is improving as it progresses through the periods, and also gives a quick view of the total number of losses in a match.



The Breakdown, which appears on the line after each Loss Bar, gives the exact number of losses for each session, as well as the exact number of losses in the match.



In our example, if you look at the Breakdown for match 1, you’ll see that period 0 has 74 losses.  We divide by 20 games and round down (I always want to under-represent the number of losses, if anything, since 100% loss is pretty common) to get the number of digits for the loss bar, so in this case the number of digits is 3 (since 3 * 20 = 60 games, and 4 * 20 = 80 games, which would be too high).  Therefore, there should be three 0’s in the loss bar for match 1, and indeed there are.



Then, for period 1, we see that we again have 74 losses.  Instead of rounding down to 60 again, we round the cumulative number of losses down to the nearest multiple of 20.  Since 74 + 74 = 148, we round down to 140, which is 7 digits.  Therefore, period 2 must have 4 digits associated with it in order to keep the total number of digits at 7.



Again, the Loss Bar is not designed to accurately represent the number of losses in a period; it is designed to provide a quick visual summary of the losses for the match.  The Breakdown lines provides the actual numbers.



At the end of each Loss Bar we print the loss rate for the match.  This is the number of losses divided by the number of games in the match.



After the last match in the session is finished, we print the total session loss rate (total losses in session divided by total games in session).  If this session loss rate is better than the best session loss rate we’ve had so far, we print a message saying so.



From a later session (42):



s42.m5  Losses:    |00011112222333344455556667778888999               | 71%

s42.m5  Breakdown: 0:78 1:76 2:73 3:76 4:73 5:66 6:70 7:64 8:66 9:68    Total:710/1000



Session loss rate = 66% -- IMPROVED!!!  (previous best was 67%)



Whenever the session loss rate improves, we copy the current neural network architecture onto a “best” architecture data structure (best_arch).  Whenever the session loss gets worse, we copy the best architecture back onto our current architecture and print an appropriate message (as we did in our main example):



Session loss rate = 68% -- got worse, restoring old arch...



If the session loss rate stays within a certain percent (the LOSS_RATE_THRESHOLD),  we don’t save or restore the best_arch, but simply continue using our current architecture.



The user can specify a Loss Rate Goal.  This is a session loss rate (expressed as a percentage) where, once we obtain it or a loss rate below it, we need not look for better architectures.  In other words, once we reach the loss rate goal, we immediately proceed to Phase 2: Finding the Best Weights (see Section 1.14.2.2).



Note that in our first example, the losses are not significantly improving during the course of a match, but instead stay relatively constant.  This is probably due to the mutated increase in the learning rate (the learning rate is normally around 0.1).  Because the learning rate is so high, there is a tendency to “overcorrect.”  This leads to quick initial learning (quick breaking of bad habits) in the early games, but very poor convergence during the later games.



Take a look at a later session, which has a learning rate of 0.0888:



s49.m1  Losses:    |00001111222233334444555566677778889999            | 77%

s49.m1  Breakdown: 0:97 1:81 2:75 3:72 4:78 5:79 6:70 7:75 8:71 9:77    Total:775/1000

s49.m2  Losses:    |000001111222333344445555666777888999              | 73%

s49.m2  Breakdown: 0:100 1:88 2:68 3:77 4:75 5:72 6:69 7:61 8:63 9:60   Total:733/1000

s49.m3  Losses:    |000011112223333444455566677778888999              | 73%

s49.m3  Breakdown: 0:89 1:79 2:70 3:75 4:70 5:73 6:62 7:71 8:72 9:73    Total:734/1000

s49.m4  Losses:    |0000111122223333444455566677778888999             | 74%

s49.m4  Breakdown: 0:91 1:77 2:82 3:79 4:74 5:59 6:69 7:76 8:73 9:69    Total:749/1000

s49.m5  Losses:    |00000111112222333344445556667778888999            | 76%

s49.m5  Breakdown: 0:100 1:100 2:91 3:75 4:75 5:68 6:69 7:61 8:68 9:60  Total:767/1000



Session loss rate = 75% -- got worse, restoring old arch...



Here we see very poor initial performance due to the slow learning rate (the bad habits are being broken very gradually).  However, this “slow but steady” learning results in better convergence in the long run, and in fact period 9’s losses for this example are fewer than those for the first example.  The overall session loss rate for this example is pretty bad, however, due to the high number of losses in the beginning.



One of the changes I’d like to make is to rate an architecture based more on its final period’s loss rate than its overall loss rate for the match. There should also be a “reward” for an architecture which converges to “perfect” (no-loss) behavior before the last period of the match.



Initially, I wanted to run a neural network until it managed to win or draw for N games in a row, and then call that point the “convergence time.”  This would speed up the learning process for “well architectured” neural networks (those that converge within a small number of games), but it would greatly extend matches for “poorly architectured” neural networks.  In fact, it is possible that a neural network might never converge to a winning configuration, in which case, the program would run indefinitely.  It’s for that reason that I chose to run a fixed number of games rather than waiting for successful convergence.



Another feature I would like to add is a variable learning rate.  This is also known as “temperature.”  In the early portions of a match, I’ll have high learning rates, so as to break bad habits as quickly as possible, but as the match progresses, I’ll gradually slow down the learning rate so that the neural network can converge nicely.



1.14.2.2 Finding the Best Weights



Once we’ve found the best architecture, we need to find the best set of weights for that architecture.  We now start up one last session, with the same number of matches and games as the previous “Phase 1” sessions.



This time, however, we examine the loss rates for each match in the session.  We find the match with the best loss rate, and then save both the current neural network architecture (which we found in Phase 1 and which doesn’t change during this session) as well as the final link weights for the neural network.  We make a note of the loss rate in the actual weights file.  (This facilitates locating the best set of weights whenever we run a script which runs TTT multiple times).



Here is an example of the Phase 2 output for the same execution as our previous example:



Done searching for optimal architecture.



*************** Final Session (looking for best weights)  ****************



NN Arch configuration:

  1 hidden layers:

    layer[1] has 23 nodes  ( This mutation (initialy 20 nodes) has been found to be beneficial.

  Learning Rate  = 0.0888  ( Note that our 0.0888 learning rate eventually found us a winner!

  Momentum       = 0.9

  Encouragement  = 0.1

  Minimum weight = -1

  Maximum weight = 1

  Act numerator  = 1

  Act add        = 0



Splitting matches (1000 games each) into 10 periods of 100 games each



Neural_2 replacing its old NeuNet...

s51.m1  Losses:    |000111122223334445556667778888999                 | 67%

s51.m1  Breakdown: 0:74 1:80 2:67 3:68 4:65 5:63 6:61 7:58 8:76 9:62    Total:674/1000

  Best loss rate yet for this architecture (67% beats 100%)

  Saving architecture to 'fast/63.cfg' and weights to 'fast/63.wts'...

s51.m2  Losses:    |000011122233334445556667778888999                 | 66%

s51.m2  Breakdown: 0:81 1:65 2:71 3:70 4:64 5:62 6:60 7:66 8:70 9:55    Total:664/1000

  Best loss rate yet for this architecture (66% beats 67%)

  Saving architecture to 'fast/63.cfg' and weights to 'fast/63.wts'...

s51.m3  Losses:    |000011122233344455566677788889999                 | 66%

s51.m3  Breakdown: 0:82 1:67 2:66 3:59 4:60 5:57 6:57 7:64 8:75 9:75    Total:662/1000

s51.m4  Losses:    |000111122223334445556667778888999                 | 67%

s51.m4  Breakdown: 0:76 1:66 2:78 3:60 4:66 5:61 6:61 7:69 8:73 9:61    Total:671/1000

s51.m5  Losses:    |00011112223334445556667777888999                  | 64%

s51.m5  Breakdown: 0:68 1:73 2:64 3:60 4:70 5:54 6:69 7:66 8:56 9:60    Total:640/1000

  Best loss rate yet for this architecture (64% beats 66%)

  Saving architecture to 'fast/63.cfg' and weights to 'fast/63.wts'...



So, with our best architecture, the best set of link weights results in a 64% overall match loss rate, and a 60% loss rate in the final period.  Note that match 2 had a better final loss rate (55% in the final period), but also that if you look the scores for the other periods, match 2 looks like it got “lucky” in the final period, while match 5’s final score was more typical of its performance.



This is perhaps in argument against considering only the final period’s loss rates when evaluating an architecture, because good or bad luck can jeopardize the reliability when committing to a particular architecture or set of weights.



Look at the amount of variation in the final period’s loss rates for each of the matches, and compare that to the variation in the average (total) loss rate.  Since this is the same architecture we’re using over and over, with only different random starting weights for each match, I am more eager to value the average loss rate rather than the final period’s loss rate, and that is indeed what I currently do.



There needs to be a compromise, some metric which combines the stability of the average loss rate with the representativeness of the final loss rate.  I could conceivably have two values: an average loss rate and a loss rate slope (or curve, though with only ten highly varying points this might not be sensible), from which you could extrapolate the final loss rate.  The mathematics should not be that difficult, and the net result should be a both reliable and representative score.  (Similar to an end-of-the-semester grade).



�1.15 main program

(see ttt.cc)



The main program parses command line options, administers the interactive mode, and then runs the program either in Game Mode or School Mode, depending on the number of sessions specified (0 is Game Mode, anything greater than 0 is School Mode).



There are several options that can be specified either on the command line or during Interactive Mode.  Use the -help (or just -h) option to get a list of command line options:



C:\My Documents\school\cs661\ttt>ttt -help



usage: ttt [options]



    GENERAL OPTIONS:



         -d<debug_level>    - debugging level (higher is more verbose)

         -h                 - prints brief command line help (this)

         -i                 - interactive mode (recommended for beginners)





    GAME PLAY OPTIONS:



         -s<num_sessions>   - number of school sessions to run

         -m<num_matches>    - number of matches per session

         -g<num_games>      - number of games per match

         -R<seed>           - random number seed





    CONFIGURATION FILE OPTIONS:



         -p<players_file>   - player configuration file

         -r<rules_file>     - rules  configuration file





    SCHOOLING OPTIONS: (only if sessions > 0 and using NeuralPlayer)



         -b<best_root>      - root file name for saving best NN architecture

         -l<loss_rate_goal> - target session loss rate (a percentage)

         -M<rate>           - NN architecture mutation rate (0 - 1)



The Interactive Mode command line option (-i) allows the user to specify the rest of the options interactively.  The interface for Interactive Mode is straightforward, as well as the most likely to change, so I will not discuss it here.



If no random seed is specified, a seed will be read in from a file (random.seed).  The seed in the file will then be incremented so that the next execution’s random seed will be different.



When all the options are specified, the main program creates a Game (or School if we’re training) and then tells it to run for the user-specified number of games, matches, etc.



I’ve created some scripts that examine TTT running with various options.  I will describe them in the following section.



�2. Input Files



TTT’s behavior is dictated by command line options and by input files.  Two input files must always be present in order for TTT to run: the Rules File (Section 2.1) and the Players File (2.2)  If a NeuralPlayer (or conceivably more than one) is participating, then up to two more file are needed to specify its architecture and starting state: the Architecture File (2.3) and the Weights File (2.4).



Each of these files has a similar “look at feel.”  First of all, they are all ASCII text files.  They can contain comment lines; these lines start with a “//”.  The first several lines are usually part of a “header block” which contains the file name and a brief, plain-English description of its contents or intent.  I’ll give an example of each type of input file in the corresponding section.



You can create these files with a normal text editor.  Some of these files are also creatable by TTT during run time.  This includes Arch Files and Weights Files (when a best architecture and best weights configuration have been found during School Mode - see Section 1.14.2: School Mode).  Also, Players Files can be created within Interactive Mode (option -i).  I currently do not allow Rules Files to be created during Interactive Mode, because they are much more complex than Players Files and are more conveniently created via a text editor.



�2.1 Rules File



Currently, I only have one Rules File, standard.rul.  It defines the standard game of Tic-Tac-Toe.  The format is straightforward.  First, it specifies the name of the variant, which in this case is “standard.”  Next, it specifies the dimensions of the game board (X and then Y) and the initial configuration of the game board (all empty).  Then, it specifies the number of win boards, and for each win board gives its dimension and its configuration:



///////////////////////////////////////////////////////////////////

//

// standard.rul

//

// Rules for standard game of tic tac toe.

//

///////////////////////////////////////////////////////////////////



// variant name



standard



// game board dimensions + initial setup

 

3 3



0 0 0

0 0 0

0 0 0



// number of win boards



4



// win board #1 dimensions + setup



3 1



1 1 1



// win board #2 dimensions + setup



1 3



1

1

1



// win board #1 dimensions + setup



3 3



1 0 0

0 1 0

0 0 1



// win board #1 dimensions + setup



3 3



0 0 1

0 1 0

1 0 0



///////////////////////////////////////////////////////////////////

�2.2 Players File



A Players File tells TTT which players will be participating the game or training.



The first piece of information is the number of players (it is currently always 2).



Then, for each player, there is a separate line.  This line first lists the player type (a string starting with t for TradPlayer, n for NeuralPlayer, or h for HumanPlayer).



If the player is a HumanPlayer, then no more information need be provided; the rest of the line is ignored.  Otherwise, the next piece of information is the ability level.  This can be the first letter of the ability level’s name (idiot, rookie, average, skilled, expert, or perfect), or it can be the numerical ability level itself (0, 1, 2, 3, 4, or 5 respectively).  



[The ability level for the NeuralPlayer is read in, but is currently ignored; I plan to later have NeuralPlayer ability levels be a function of the duration of their training prior to playing a game]



If the player is a TradPlayer, then it is finished.  Otherwise, for NeuralPlayer, an architecture file is specified (see Section 2.3).  This must be the complete filename, with the path relative to the current working directory.



Finally, a NeuralPlayer can optionally have a weights file specified (see Section 2.4).  If one is specified, then those weights will be loaded prior to the first match.  Otherwise, random link weights will be used.



Example input file:



///////////////////////////////////////////////////////////////////

//

// np.pla

//

// Players: Neural (perfect) versus perfect traditional

//

///////////////////////////////////////////////////////////////////



// number of players



2



// type and ability of players



trad perfect

nn   perfect arch/default.cfg



///////////////////////////////////////////////////////////////////



The “perfect” ability level for the NeuralPlayer is read in, but ignored.



�2.3 Architecture File



An Architecture File specifies the architecture for the neural network used by a NeuralPlayer.  Its format is self explanatory.



///////////////////////////////////////////////////////////////////////

//

// default.cfg

//

// Default NeuNet configuration

//

///////////////////////////////////////////////////////////////////////



// number of hidden layers //

1



// number of nodes for layer 1 //

20



// learning rate //

0.3



// momentum //

0.9



// encouragement //

0.1



// min link wt //

-1.0



// max link weight //

1.0



// activation function parameters //

//

// numerator

1.0



// added //

0.0



///////////////////////////////////////////////////////////////////////



Note that the number of hidden layers and the activation function parameters are open to modification, but not to mutation from within the game.  Currently, changing the activation function parameters will most likely result in program failure.  I might eliminate these as configurable parameters in the future, but for now have left them in, in case I find a way to allow the user to modify them safely.



�2.4 Weights File



The final type of input file is the Weights File.  This is created by TTT whenever it finds a “best weights” configuration for a “best architecture”.



Since it contains the link weights for every node in the neural network, a weights file can be very long.  Here is the first part of one:



//////////////////////////////////////////////////////////////////

//

// z/29.wts    (loss rate was 2%)

//

// NeuNet state file, generated automatically.

//

//////////////////////////////////////////////////////////////////



// Number of layers (verification) //



3



// Number of nodes in Layer 0 //



18



// Number of links from Node 0.0 //



43



// Links (weight, adjustment, name) //



  -2.91067   -0.00000   [0.0 -> 1.0]

  -1.59828    0.00000   [0.0 -> 1.1]

  -1.51349   -0.00000   [0.0 -> 1.2]

   1.61953    0.00000   [0.0 -> 1.3]

	etc.



Notice the number of output links from Node 0.0 (43).  This means there are 43 nodes in the hidden layer!  Now, look at the loss rate comment that was automatically added to the header block by TTT: (loss rate was 2%).  2% is excellent, the best I’ve ever seen.  In this particular run, we had 1000 games per match.  2% in a match means we only lost 20 games!  This tells me that we got pretty lucky with our random initial weights.



Also notice the 0.00000 adjustments.  Many of the sets of input links to the hidden nodes ended up having all 0’s for adjustments in this particular case.  This means that some of the 43 hidden nodes were never adjusted.  Adjustment only happens during reinforcement and since we only had to reinforce a handful of times, these 0’s makes perfect sense.



It was not all luck, however; this particular run (#29) had several very match loss rates (under 10%).  



�3. Test Cases and Scripts



I have created several scripts that call TTT using different command line arguments.  They have various purposes.



3.1 DeathMatch



A DeathMatch is a competition between a number of different Players.  It is used for seeing how players compare against each other, to get an ideal of relative ranking.



I have created a TradPlayer DeathMatch, in which a TradPlayer from each ability level plays TradPlayers from the other ability level exactly once (one match per confrontation, 100 games in that match).  This was done using the Look Ahead algorithm, which takes a while to execute.  Here are the results, which are in the form of match win tallies:



*** Wins:  Draws (10)   Trad_Idiot_1 (44)       Trad_Idiot_2 (46)       ***

*** Wins:  Draws (9)    Trad_Idiot_1 (47)       Trad_Rookie_2 (44)      ***

*** Wins:  Draws (15)   Trad_Idiot_1 (35)       Trad_Average_2 (50)     ***

*** Wins:  Draws (13)   Trad_Idiot_1 (15)       Trad_Skilled_2 (72)     ***

*** Wins:  Draws (11)   Trad_Idiot_1 (3)        Trad_Expert_2 (86)      ***

*** Wins:  Draws (13)   Trad_Idiot_1 (0)        Trad_Perfect_2 (87)     ***

*** Wins:  Draws (18)   Trad_Rookie_1 (35)      Trad_Rookie_2 (47)      ***

*** Wins:  Draws (14)   Trad_Rookie_1 (34)      Trad_Average_2 (52)     ***

*** Wins:  Draws (20)   Trad_Rookie_1 (20)      Trad_Skilled_2 (60)     ***

*** Wins:  Draws (13)   Trad_Rookie_1 (7)       Trad_Expert_2 (80)      ***

*** Wins:  Draws (6)    Trad_Rookie_1 (0)       Trad_Perfect_2 (94)     ***

*** Wins:  Draws (21)   Trad_Average_1 (37)     Trad_Average_2 (42)     ***

*** Wins:  Draws (27)   Trad_Average_1 (29)     Trad_Skilled_2 (44)     ***

*** Wins:  Draws (26)   Trad_Average_1 (20)     Trad_Expert_2 (54)      ***

*** Wins:  Draws (23)   Trad_Average_1 (0)      Trad_Perfect_2 (77)     ***

*** Wins:  Draws (29)   Trad_Skilled_1 (27)     Trad_Skilled_2 (44)     ***

*** Wins:  Draws (33)   Trad_Skilled_1 (18)     Trad_Expert_2 (49)      ***

*** Wins:  Draws (33)   Trad_Skilled_1 (0)      Trad_Perfect_2 (67)     ***

*** Wins:  Draws (46)   Trad_Expert_1 (19)      Trad_Expert_2 (35)      ***

*** Wins:  Draws (65)   Trad_Expert_1 (0)       Trad_Perfect_2 (35)     ***

*** Wins:  Draws (100)  Trad_Perfect_1 (0)      Trad_Perfect_2 (0)      ***



You can see here that PERFECT never loses; this validates the Look Ahead algorithm.  IDIOT (basically random) almost always performs the worst against the other players.  One exception is that PERFECT tends to beat ROOKIE even more often than it beats IDIOT; this is most likely not complete luck, because it is repeatable --- I just ran another TradPlayer DeathMatch and PERFECT won 85 times vs. IDIOT and 87 vs. ROOKIE.  



Also notice how PERFECT beats EXPERT a whopping 35 times of the 100 (34 out of 100 in the second DeathMatch I just ran).  This shows how the extra Look Ahead depth and the elimination of mistakes can really make a difference in “highly competitive” games.  If you look at the “rout” games, such as versus the IDIOT, you’ll see that EXPERT and PERFECT score much more closely to one another.



�3.2 Learning Scripts



I have created a series of scripts that I use to find decent neural network architectures.  These scripts run TTT repeatedly, using different command line options in an attempt to find out what the “best” values for the options are.



I do this systematically rather than randomly (I initially intended to mutate them just like I do the NN architecture parameters) because each run can take anywhere from a couple seconds to a couple of days to run, and I want to have as much control as possible over how long it takes to get acceptable results (results being a decent NeuNet architecture and set of link weights).



An example of one of my learning scripts (the one that produced run #29):



# normal run, see how much variance due to seed



ttt -s200 -m10 -g500 -R0 -l0 -bz/00 > z/00.out

ttt -s200 -m10 -g500 -R1 -l0 -bz/01 > z/01.out

ttt -s200 -m10 -g500 -R2 -l0 -bz/02 > z/02.out

ttt -s200 -m10 -g500 -R3 -l0 -bz/03 > z/03.out

ttt -s200 -m10 -g500 -R4 -l0 -bz/04 > z/04.out

ttt -s200 -m10 -g500 -R5 -l0 -bz/05 > z/05.out

ttt -s200 -m10 -g500 -R6 -l0 -bz/06 > z/06.out

ttt -s200 -m10 -g500 -R7 -l0 -bz/07 > z/07.out

ttt -s200 -m10 -g500 -R8 -l0 -bz/08 > z/08.out

ttt -s200 -m10 -g500 -R9 -l0 -bz/09 > z/09.out



# vary the loss rate goal



ttt -s200 -m10 -g500 -R0 -l10  -bz/10 > z/10.out

ttt -s200 -m10 -g500 -R1 -l20  -bz/11 > z/11.out

ttt -s200 -m10 -g500 -R2 -l30  -bz/12 > z/12.out

ttt -s200 -m10 -g500 -R3 -l40  -bz/13 > z/13.out

ttt -s200 -m10 -g500 -R4 -l50  -bz/14 > z/14.out

ttt -s200 -m10 -g500 -R5 -l60  -bz/15 > z/15.out

ttt -s200 -m10 -g500 -R6 -l70  -bz/16 > z/16.out

ttt -s200 -m10 -g500 -R7 -l80  -bz/17 > z/17.out

ttt -s200 -m10 -g500 -R8 -l90  -bz/18 > z/18.out

ttt -s200 -m10 -g500 -R9 -l100 -bz/19 > z/19.out



# vary the number of games per match



ttt -s200 -m10 -g050  -R0 -l0 -bz/20 > z/20.out

ttt -s200 -m10 -g100  -R1 -l0 -bz/21 > z/21.out

ttt -s200 -m10 -g150  -R2 -l0 -bz/22 > z/22.out

ttt -s200 -m10 -g200  -R3 -l0 -bz/23 > z/23.out

ttt -s200 -m10 -g250  -R4 -l0 -bz/24 > z/24.out

ttt -s200 -m10 -g300  -R5 -l0 -bz/25 > z/25.out

ttt -s200 -m10 -g350  -R6 -l0 -bz/26 > z/26.out

ttt -s200 -m10 -g400  -R7 -l0 -bz/27 > z/27.out

ttt -s200 -m10 -g450  -R8 -l0 -bz/28 > z/28.out

ttt -s200 -m10 -g1000 -R9 -l0 -bz/29 > z/29.out	( this one got us the 2% loss rate weights



# vary the number of matches per session



ttt -s200 -m1  -g500 -R0 -l0 -bz/30 > z/30.out

ttt -s200 -m3  -g500 -R1 -l0 -bz/31 > z/31.out

ttt -s200 -m5  -g500 -R2 -l0 -bz/32 > z/32.out

ttt -s200 -m20 -g500 -R3 -l0 -bz/33 > z/33.out

ttt -s200 -m30 -g500 -R4 -l0 -bz/34 > z/34.out



# vary the number of sessions



ttt -s1   -m10 -g500 -R0 -l0 -bz/40 > z/40.out

ttt -s10  -m10 -g500 -R1 -l0 -bz/41 > z/41.out

ttt -s50  -m10 -g500 -R2 -l0 -bz/42 > z/42.out

ttt -s100 -m10 -g500 -R3 -l0 -bz/43 > z/43.out

ttt -s500 -m10 -g500 -R4 -l0 -bz/44 > z/44.out



The above script took five days to run back when I was using Magic Formula.  If I ran this today using Look Ahead, I estimate it would take weeks or months.  My latest scripts are shorter (in terms of number of executions), so that I can run on multiple processors.



Here are the best link weights’ loss rates for each of the above runs:



y/00.wts:// z/00.wts    (loss rate was 82%)  	( notice the variance between all of these!

y/01.wts:// z/01.wts    (loss rate was 62%)	 (same options, but different random seeds)

y/02.wts:// z/02.wts    (loss rate was 46%)	  

y/03.wts:// z/03.wts    (loss rate was 44%)

y/04.wts:// z/04.wts    (loss rate was 18%)

y/05.wts:// z/05.wts    (loss rate was 76%)

y/06.wts:// z/06.wts    (loss rate was 37%)

y/07.wts:// z/07.wts    (loss rate was 36%)

y/08.wts:// z/08.wts    (loss rate was 25%)

y/09.wts:// z/09.wts    (loss rate was 16%)



y/10.wts:// z/10.wts    (loss rate was 82%)	( loss rate goal overwhelmed by variance

y/11.wts:// z/11.wts    (loss rate was 62%)

y/12.wts:// z/12.wts    (loss rate was 46%)

y/13.wts:// z/13.wts    (loss rate was 44%)

y/14.wts:// z/14.wts    (loss rate was 18%)

y/15.wts:// z/15.wts    (loss rate was 76%)

y/16.wts:// z/16.wts    (loss rate was 63%)

y/17.wts:// z/17.wts    (loss rate was 84%)

y/18.wts:// z/18.wts    (loss rate was 70%)

y/19.wts:// z/19.wts    (loss rate was 41%)



y/20.wts:// z/20.wts    (loss rate was 84%)

y/21.wts:// z/21.wts    (loss rate was 80%)

y/22.wts:// z/22.wts    (loss rate was 83%)

y/23.wts:// z/23.wts    (loss rate was 34%)

y/24.wts:// z/24.wts    (loss rate was 55%)

y/25.wts:// z/25.wts    (loss rate was 29%)

y/26.wts:// z/26.wts    (loss rate was 20%)

y/27.wts:// z/27.wts    (loss rate was 53%)

y/28.wts:// z/28.wts    (loss rate was 72%)

y/29.wts:// z/29.wts    (loss rate was 2%)	( the best



y/30.wts:// z/30.wts    (loss rate was 63%)

y/31.wts:// z/31.wts    (loss rate was 87%)

y/32.wts:// z/32.wts    (loss rate was 83%)

y/33.wts:// z/33.wts    (loss rate was 14%)	( very good

y/34.wts:// z/34.wts    (loss rate was 11%)	( very good



y/40.wts:// z/40.wts    (loss rate was 76%)

y/41.wts:// z/41.wts    (loss rate was 74%)

y/42.wts:// z/42.wts    (loss rate was 79%)

y/43.wts:// z/43.wts    (loss rate was 47%)

y/44.wts:// z/44.wts    (loss rate was 51%)



29 did really well due of the large number of games per match.  33 and 34 did well also due to a large number of matches per session (more reliable match loss rates).

�3.3 Exam



An exam pits a NeuralPlayer against a variety of TradPlayers.  The goal is to find out “about how good” the NeuralPlayer is in terms of TradPlayer ability.



This script, of course, can only be run once a NeuralPlayer has been trained, with an architecture and a set of “best weights” saved to files.



An example of an exam’s results:



*** Wins:  Draws (0)    Neural_1 (43)   Trad_Idiot_2 (57)       ***

*** Wins:  Draws (0)    Neural_1 (36)   Trad_Rookie_2 (64)      ***

*** Wins:  Draws (1)    Neural_1 (19)   Trad_Average_2 (80)     ***

*** Wins:  Draws (2)    Neural_1 (9)    Trad_Skilled_2 (89)     ***

*** Wins:  Draws (1)    Neural_1 (3)    Trad_Expert_2 (96)      ***

*** Wins:  Draws (6)    Neural_1 (0)    Trad_Perfect_2 (94)     ***



This particular NeuralPlayer is dumber than an IDIOT-level TradPlayer.  In other words, this NeuralPlayer performs worse than random… and this is none other than the “fabulous” #29, the one that got a 2% loss rate against Magic Formula.  



With Look Ahead, there’s only about a 1 in 9 chance that a TradPlayer will move to the center first, so the other 8/9 of the time, the NeuralPlayer is bound to be unprepared.



This illustrates the difficulty in getting decent Neural Network behavior when the training is itself inadequate!



�4. Future Plans



There are several modifications and additions I’d like to make to TTT.  



4.1 Improve Efficiency



First and foremost, I need to seriously increase the efficiency of the Look Ahead algorithm, because the current run times are horrendous.



There are several ways that Look Ahead execution might be sped up:



The individual evaluations can be made to run faster.  This might involve stripping all debug statements from the code, using two for loops instead of iterators, and forcing the use of registers on the looping variables.  It also might involve making TradPlayer a friend of Board, or inlining a lot of the Board logic, so that TradPlayer doesn’t have to make any function calls while evaluating moves.



I could also find some way to reduce the number of evaluations.  This probably involves coming up with some algorithmic short cuts.  Any short cuts have to be considered very carefully, to make sure they don’t reduce the generality of the algorithm.



I could write the Look Ahead routine in assembly language.  This increases the programming complexity, and in my mind should be considered a last resort.



I could dispose of Look Ahead altogether and find some other algorithm that guarantees arbitrarily unbeatable performance for all conceivable Tic-Tac-Toe variants.  I do not know if such an algorithm exists…



The speed of the neural network can also be optimized a bit.



Getting rid of all the DEBUG() statements will certainly improve performance, as well as increasing the use of  friendly references instead of function calls.



Adding Look Ahead to the NeuralPlayer itself would speed up the learning by increasing the supervision.



Alternatively, I could play NeuralPlayers against one another, completely unsupervised, and bypass TradPlayer altogether  The more successful (least losses) NeuralPlayers would continue, while the losers would be forced to mutate.



�4.2 Rules Variants



Once TTT runs quickly enough, I’d like to see how it performs on different Tic-Tac-Toe variants (different board, different set of rules, different number of players).  A 10 by 10 board increases the complexity enormously, so TTT needs to be fast before we can even consider this step.



4.3 Preferences



Next, I’d like to add preferences.  Each Player, whether a human, a TradPlayer, a NeuralPlayer, or even a Referee, would have a set of favored game characteristics.  These characteristics could include such things as:



game length

game size -- board size

number of rules -- number of win boards

complexity of rules -- are the win boards symmetric?

complexity of play -- how much training does it takes a NN to reach a certain ability level, how much planning a TradPlayer must do, how long a HumanPlayer must ponder a move, how many times the Referee has to reject an invalid move

ability bias -- how frequent are upsets?  Is winning independent of ability level?

number of players



The Referee’s overall goal might be to always favor the “cheapest” game - the game with the smallest board size, shortest turns, etc.



Meanwhile, a human player might prefer a “challenging” set of rules (many, non-symmetric), a large board, a large number of players, a 10% chance of an expert upsetting a perfect player, etc.



For instance, consider a 1x1 board where you have to get 1 in a row.  This board has no ability bias; there is no “reward” for playing this game repeatedly.  If a human player favors a fair degree of ability bias, then this board will get a low ranking.  But this board is also very “cheap” in almost all respects - short game length, small board size, small number of win boards, etc.  And it is very easy to learn (though there is no reward for doing so).



After getting preferences ironed out, the idea is to use genetic programming to generate a given player’s (or set of players’) “ideal” game.  I have never heard of games being created this way; the novelty of the concept was my initial inspiration for the project.

�4.4 Miscellaneous



I mentioned several miscellaneous enhancement ideas throughout the earlier parts of this document.



I am also considering the following (some have been mentioned previously):



Improve the user interface to the point where command-line scripts are unnecessary.



Allow a human user to peek into the brains of a TradPlayer - it would be nice to see how the Look Ahead is progressing while you play it, so that you can try to exploit any weaknesses you detect in the TradPlayer’s logic (this is mostly for debugging purposes)



Expand on DeathMatches - run multiple matches per duel, and, once I get some decent NeuralPlayers, put together a NeuralPlayer DeathMatch, and possibly a combination of NeuralPlayers and TradPlayers



Use a system clock to report the length of time an algorithm or execution is taking, as well as predict the amount of time until completion



Find a way to take better advantage of parallel processing.  Right now I only user parallelism at the script level; it would be handy to have it at least at the single execution level.  To have it within the program would be even better.



Eventually get to the point of encouraging a “competition,” where people go off and “grow” NeuralPlayers or design TradPlayers that can compete against others.  Of course, standard Tic-Tac-Toe isn’t challenging enough, so it’d probably have to be one of the more complex variants.  This is basically the C-robots/core-wars concept. 
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